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SUMMARY
In Pogonomyrmex californicus harvester ants, an age-associated division of labor occurs in the worker caste, in which young
workers perform in-nest tasks and older workers forage for food. Here, we tested whether this behavioral division is age based or
age flexible, and whether it coincides with differential expression of systemic hormones with known roles in behavioral regulation.
Whole-body content of juvenile hormone (JH) and ecdysteroids was determined in workers from (1) age-typical colonies, in which
a typical age structure is maintained and workers transition across behaviors naturally, and (2) single-cohort colonies, which are
entirely composed of same-aged workers, facilitating the establishment of age-independent division of labor. Foragers from both
colony types had higher JH and lower ecdysteroid content than workers performing in-nest tasks, suggesting that age is not the
sole determinant of worker behavior. This association between hormone content and behavior of P. californicus workers is similar
to that previously observed in founding queens of this species. Because these hormones are key regulators of development and
reproductive behavior, our data are consistent with the reproductive ground plan hypothesis (RGPH), which posits that the

reproductive regulatory mechanisms of solitary ancestors were co-opted to regulate worker behavior.
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INTRODUCTION

The evolution of increasing social complexity in insects culminates
in colonial species exhibiting a reproductive division of labor
(Wilson, 1971). In addition, a further division of tasks within the
non-reproductive worker caste often exists (Holldobler and Wilson,
2009). The regulatory mechanisms by which such complexity is
produced have received considerable attention. Much of this work
has focused on the honey bee, Apis mellifera (e.g. Robinson, 1992;
Ben-Shahar et al., 2002; Amdam et al., 2004; Rueppell et al., 2004;
Amdam et al., 2006; Hunt et al., 2007; Thle et al., 2010). Emerging
from these studies is support for a hypothesis that social behavior
evolved through the co-option of regulatory factors that originally
coordinated the progression of female reproductive physiology and
behavior in solitary ancestors — the reproductive ground plan
hypothesis (RGPH) (West-Eberhard, 1987; West-Eberhard, 1996;
Amdam et al., 2004). Specifically, this hypothesis predicts that
several non-reproductive behavioral traits that are observed in
social insect societies are regulated by mechanisms normally
associated with reproductive development and activity. While there
is support for this argument in a few species of bees and wasps,
testing in other social insect taxa is necessary to assess the broader
application of the RGPH (Amdam and Page, 2010). Here, we
present the first such study for ants, a major taxon that
independently evolved (Brady et al., 2006; Moreau et al., 20006)
a level of social complexity comparable to that of A. mellifera
(Holldobler and Wilson, 1990). In addition, our investigations
provide basic proximate information on how hormones correlate
with behavioral transitions in ants.

Numerous evolutionary scenarios have been posited for the division
of labor between ant workers (Holldobler and Wilson, 2009), but few
studies have investigated connections between physiology, specifically
of the reproductive system, and the regulation of behavioral
differentiation. We recently showed that changes in the behavior of
nest-founding queens (female reproductives) of the California
harvester ant, Pogonomyrmex californicus, are coordinated with their
endocrine state. This finding suggests that divergent behavioral
phenotypes could be produced by differential expression of endocrine
factors normally associated with reproduction (Dolezal et al., 2009),
and is consistent with the predictions of the RGPH. If the RGPH is
broadly applicable, then the behavior of P. californicus workers should
be underpinned by the same reproductive physiology that was
observed in founding queens. Task performance in these workers is
naturally age related (Holldobler and Wilson, 2009) (A.G.D., personal
observation), with younger individuals performing in-nest tasks such
as brood care and nest maintenance, and older individuals leaving
the nest to perform foraging-related tasks; this temporal polyethism
is one of the key factors contributing to the major ecological success
of social insects (Holldobler and Wilson, 2009). For many species
exhibiting these behavioral transitions, it is possible to decouple
behavior from age by manipulating the environment of the workers
(Nelson, 1927; Holldobler and Wilson, 2009), providing a useful tool
for verifying the role of putative behavioral regulators.

The primary regulators of both behavior and ovarian activity in
insects are the systemic endocrine factors juvenile hormone (JH)
and ecdysteroids. Both have organizational, priming and/or
coordinating effects (reviewed by Raikhel et al., 2005). JH has been
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associated with division of labor among workers of the honey bee
(reviewed by Robinson and Vargo, 1997), the bumble bee (Bloch
et al., 2000a), the queenless ant Streblognathus peetersi (Brent et
al., 2006) and Polistes wasps (Giray et al., 2005). Although no causal
route from ecdysteroid content to division of labor has been
demonstrated (Hartfelder et al., 2002), this group of hormones is
suspected of having priming effects on honey bee worker behavior
(Velarde et al., 2009; Wang et al., 2009; Amdam and Page, 2010),
and has links to adult reproductive activity (Robinson et al., 1991).
Ecdysteroids act via effects on the axis of brain/fat body/ovaries
(Wang et al., 2010; Yamazaki et al., 2011), and ecdysteroid
production is often linked to insect ovarian activation (Raikhel et
al., 2005; Dong et al., 2009). These hormones are also implicated
as a behavioral regulator in S. peetersi (Brent et al., 2006), paper
wasps (Roseler et al., 1985) and bumble bees (Bloch et al., 2000b).
In P. californicus founding queens, we found more JH in foragers
compared with those performing in-nest tasks, while ecdysteroids
had no apparent behavioral association (Dolezal et al., 2009). Queen
ovarian activity (egg production) co-varies with JH and behavior,
while the ovaries, a major source of ecdysteroids in insects (Raikhel
et al.,, 2005), are invariably intact and presumably functional
(A.G.D., unpublished data). Nurse workers of P. californicus have
functional ovaries that produce nutritional eggs; in contrast, foragers
usually have degraded and presumably non-functional ovaries
(Holldobler and Wilson, 2009) (A.G.D., unpublished data).

The genus Pogonomyrmex is a very suitable model species for
studying the endocrinological parameters involved in the division
of labor between nurses and foragers. Pogonomyrmex californicus
is, in particular, relatively easy to culture in the laboratory under
controlled conditions. In the current study, we anticipated that P.
californicus worker division of labor would be associated with
endocrine content, and that associations could be predicted from
the physiology of queens, as suggested by the RGPH. Accordingly,
we expected JH to be elevated in foragers, while ecdysteroids should
be influenced by worker ovarian integrity, and therefore be reduced
in foragers. To test these predictions, we examined the behavior
and corresponding endocrine patterns in the monomorphic workers
and foragers from both age-typical colonies (those possessing a
normal distribution of workers at all ages and stages of development)
and single-cohort colonies. The similarly aged workers of the single-
cohort colonies must divide labor between nest tasks and foraging,
removing the influence of any age-based behavioral bias. Although
this robust approach has been widely used in honey bee research
(Nelson, 1927; Robinson et al., 1989; Huang and Robinson, 1995),
single-cohort experiments are rare in ant research (Gronenberg et
al., 1996; Haight, 2006; Haight, 2008).

Our analysis, which provides one of the most complete
investigations between ant division of labor and hormone
physiology, reveals significant associations between ant reproductive
endocrine physiology and social task performance independent of
chronological age effects. The results highlight the behavioral and
endocrine plasticity of worker ants and provide support for the
RGPH in a non-Apis eusocial insect species with an independent
evolutionary origin of sociality.

MATERIALS AND METHODS
Division of labor among workers from colonies with a typical
age structure
Mature colonies of P. californicus, Buckley 1867, were maintained
in the laboratory at the School of Life Sciences, Arizona State
University. Four colonies were chosen for the experiment, each reared
under laboratory conditions (natural light cycle, ~25°C) for at least
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3years and stably exhibiting normal social structure. Late-stage pupae
from these and five other laboratory-maintained colonies were
carefully observed. When callow (young, light-colored) workers
emerged, all individuals that eclosed on the same day were marked
by tying a small colored wire around the petiole (modified from
Tschinkel, 2006). Approximately 350 newly emerged workers were
identified, marked, and introduced in several pulses to the four
experimental colonies between 15 July 2007 and 28 October 2007.
The new workers were readily accepted, and because they were
marked with colors corresponding to their day of emergence, it was
possible to determine their age at the point at which their behavior
transitioned.

Between 15 July 2007 and 13 May 2008 the colonies were
observed 1-3 times per week, for 15-30min per observation. After
15days, we collected marked workers that had performed nursing
behaviors; these were individuals that had not been observed
outside of the inner nest and were collected from the vicinity of the
brood pile. No marked workers had begun foraging at this time.
Colony observation continued and the day on which marked
individuals were first observed to forage was noted. Ants handling
food items or water outside the nest were defined as foraging. New
foragers were marked with a small amount of colored fluorescent
powder, to allow for repeated identification. The powder is normally
observable for several days. When an individual worker had been
observed foraging 3 times, it was designated as a confirmed forager.
Although the marking powder may have been groomed off prior to
confirmation of forager status, this would only result in some
workers being observed foraging more than 3 times. For both
identified nest workers and foragers, 89 individuals were surveyed
for age and collected to determine hormone content.

Division of labor among workers from single-cohort colonies
Local field colonies of P. californicus were partially excavated in
the summer and autumn of 2008, and as many callow workers as
possible were collected from each nest. Cuticle pigmentation was
used as a marker to identify workers of close to identical adult age.
Only the lightest colored, and thus youngest, workers were collected.
The workers were brought back to the laboratory, and approximately
200 were added to each of six experimental colonies, where they
were readily accepted. The host colonies were 1.5-2.5 years of age,
with approximately 300 workers each. After 2 days, all of the original
members of the colony were removed, leaving only the queen, eggs,
larvae and 200 young, same-aged workers. Four out of the six
colonies recovered successfully from the disturbance while the
remaining two failed and were excluded from the experiment.

The four single-cohort colonies were observed 3—7 days per week,
2-3 times per day, for 5-10min per observation. Foraging
individuals were marked as described above, with fluorescent
powder. Once a worker had been observed foraging on three
occasions, she and an in-nest worker from the same nest were
collected. These collections continued for the duration of the
experiment, with all workers collected between the ages of 13 and
50days. The experiment was ended after 50days, at which point
the population of each colony had dropped below approximately
25 workers, and foraging events were rare.

Sampling and hormone assays
The measurement of whole-body hormone content was necessitated
by the small size of the ants, but facilitated by the monomorphic
(Johnson, 2000) bodies of these workers. Five workers from within
the same behavioral group (i.e. foraging or nursing) and colony type
(i.e. age-typical or single-cohort colony) were pooled to form each
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biological sample for hormone analysis. Workers were pooled
between the four replicate colonies of each type, so each biological
sample provided a representative cross-section of the sample
material. Animals were collected directly into 0.5ml of cold
methanol (Sigma-Aldrich, St Louis, MO, USA) to minimize the
effect of handling stress on their endocrine state.

Hormone extraction and purification then followed the same
processes utilized in P. californicus queens (Dolezal et al., 2009)
(modified from Shu et al., 1997). JH was extracted from the
homogenate using hexane and was then purified via elution through
aluminium oxide columns with hexane, 10% ethyl ether—hexane and
30% ethyl ether—hexane (Sigma-Aldrich). The JH was derivatized
using a solution of methyl-d alcohol and trifluoroacetic acid, then
resuspended and eluted through aluminium oxide columns with 30%
ethyl ether and ethyl acetate—hexane. JH was quantified using an
Agilent 6890 Series GC (Hewlett Packard, Palo Alto, CA, USA)
equipped with a 30m>0.25 mm Carbowax Econo-Cap GC column
(Alltech, Fresno, CA, USA) coupled to an Agilent 5973N inert mass-
selective detector/detection software (MSD/DS).

After JH had been extracted, the remaining homogenate in
methanol was analyzed using a radioimmunoassay to determine
ecdysteroid content. Standard competition curves were generated
for each sample set using 20-hydroxyecdysone stock (Sigma-
Aldrich). Duplicates of each sample were incubated overnight at
4°C on an orbital shaker with 100l of (3H)-20-hydroxyecdysone
stock (I mgml™, NEN, PerkinElmer, Waltham, MA, USA) in borate
buffer, and 100ul of a polyclonal ecdysteroid antiserum (H-22
antibody, L. Gilbert, University of North Carolina at Chapel Hill).
Subsequently, samples received 20 ul of cleaned protein A solution
(Pansorbin; CalBiochem, San Diego, CA, USA) and were incubated
for 1h at room temperature. Samples were then centrifuged and
washed with borate buffer. Microlabel incorporation was determined
by a 2450 MicroBeta2 scintillation counter (Perkin-Elmer, Waltham,
MA, USA) and ecdysteroid concentrations were estimated via non-
linear regression (Brent et al., 2006).

Statistics

The data for initiation of foraging, JH content and ecdysteroid
content in the single-cohort workers showed a general lack of
normality, and did not pass the assumption of homogeneity of
variances (Levene’s test; P<0.05). Therefore, non-parametric
Mann—Whitney U-tests were used to determine whether there were
significant differences in foraging age, JH content and single-cohort
ecdysteroid content between nest workers and foragers. The
ecdysteroid content of the age-typical group met the homogeneity
assumption (Levene’s test, P>0.05), but did not fit a normal
distribution as determined by a normality plot on the residuals. The
data conformed to the assumption of normality after log
transformation and were subsequently analyzed with the parametric
Student’s #-test. A non-parametric Kruskal-Wallis one-way
ANOVA was performed to identify any intercolonial differences in
hormone levels. Spearman rank tests were used to determine
whether there were correlations between age and hormone levels
under each colony condition. An alpha value of 0.05 was used for
acceptable significance in all tests. The analyses were performed
using Statistica 7.0 (StatSoft, Tulsa, OK, USA).

RESULTS
Timing and age of behavioral transitions in naturally aging
and single-cohort colonies
The observations of confirmed foraging by age-typical and single-
cohort workers showed significant differences in age at foraging
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Fig. 1. Age of confirmed foraging of age-typical and single-cohort colonies.
Single-cohort workers initiated foraging significantly earlier, as indicated by
the asterisk (Mann—-Whitney U-test, P<0.05). Sample sizes are indicated
above the bars.

confirmation. On average, single-cohort (sc) workers initiated
foraging 5 times earlier than the marked workers (at) in age-typical
colonies (Mann—Whitney U-test: U=0.0, N,=88, Ny=115, P<0.001;
Fig.1). In addition, the variance in age at foraging initiation was
reduced in single-cohort colonies (Var,=4600.506, Var,=141.75;
Levene’s test, F=164.76, P<0.001), reflecting the compressed
timescale for the transition to foraging behavior.

Age-typical colonies: hormone activity

Significant differences were observed in JH content between nest
workers and foragers. Relative to nest workers, foragers from age-
typical colonies contained 6 times the JH (Mann—Whitney U-test:
U=18, Nyes=16, Nporager=19, P<0.001; Fig.2A) and half the
ecdysteroids (Student’s r-test: Npes=16, Npgrager=19, F=1.363,
P=0.043; log transformed for normalization; Fig.2A). There were
no significant differences in JH (Kruskal-Wallis ANOVA: N=35,
H=0.299, P=0.96) or ecdysteroid (Kruskal-Wallis ANOVA: N=35,
H=3.938, P=0.268) content between the colonies. While each
replicate colony had a sample size that was too small for robust
statistics, the data trend of each colony was the same as the overall
result (Fig. 2C). Analysis also showed that there was no significant
correlation between JH and ecdysteroid content (Spearman rank
correlation: Npes=16, Nforager=19, p=-0.19, P>0.05). In the age-
typical colonies, however, there was a significant correlation
between hormone content and age when all individuals were
considered together. Increased age was correlated with increased
JH (Spearman rank correlation: Npes=16, Npprager=19, p=0.84,
P<0.05; Fig.3A) and decreased ecdysteroids (Spearman rank
correlation: Nyes=16, Niorager=19, p=-0.387, P<0.05; Fig.3C).

Single-cohort colonies: hormone activity
Relative to nest workers, same-aged foragers from the single-cohort
colonies contained 10 times more JH (Mann—Whitney U-test: U=3,
Nies=17, Niorager=18, P<0.001; Fig.2B) and 50% less ecdysteroids
(Mann-Whitney U-test: U=74, Npes=18, Niorager=18, P=0.005;
Fig.2B). There were no significant differences in JH
(Kruskal-Wallis ANOVA: N=35, H=0.313, P=0.9576) or
ecdysteroid levels (Kruskal-Wallis ANOVA: N=35, H=3.814,
P=0.2822) between the colonies. While statistics were not calculated
for each replicate colony, the data trends were consistent with the
overall result (Fig.2D). Unlike the age-typical colonies, single-
cohort colonies exhibited a significant negative correlation between
JH and ecdysteroid content (Spearman rank correlation: Npeg=17,
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(F) stages, and (B) single-cohort workers performing nest (N) or foraging (F) tasks. Significant differences in juvenile hormone and ecdysteriod content
between nurses and foragers are indicated by asterisks and daggers, respectively. Age-typical ecdysteroids: Student’s t-test, P<0.05; all others:
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robust statistical analyses; however, the general trend in each colony is the same as the overall result (A and B, respectively). Sample sizes are indicated

above the bars.

Nrorager=18, p=-0.569, P<0.05), and no correlation between age and
JH content (Spearman rank correlation: Nyeo=17, Nporager=18,
p=-0.18, P>0.05; Fig.3A vs 3B) or ecdysteroid content (Spearman
rank correlation: Nyes=17, Niorager=18, p=0.03, P>0.05; Fig.3C vs
3D). In addition, the JH content of foragers from single-cohort
colonies was significantly higher than that of foragers from the age-
typical colonies (Mann—Whitney U-test: U=48, Ny=18, Ny=18,
P<0.005).

DISCUSSION

Our observations of foraging onset times in age-typical and single-
cohort colonies show that P. californicus worker behavior is very
flexible, and can be accelerated substantially by modified colony
demography (Fig. 1). This acceleration is well described in honey
bees (Nelson, 1927; Robinson et al., 1989; Huang and Robinson,
1995), and similar experiments in ants have shown that worker
behavior can change quickly as task requirements change (Ehrhardt,
1931). However, our manipulation of P. californicus worker age
demography provides new evidence that extensive behavioral
plasticity is possible in these ants. Workers in single-cohort colonies
exhibited remarkably accelerated behavioral maturation and initiated
foraging an average of 100days earlier than those in age-typical
colonies (Fig. 1).

Regardless of whether the workers were raised in age-typical or
single-cohort colonies, there was an association between endocrine
patterns and behavioral phenotypes. JH content was consistently
higher in foragers from both groups relative to the content in the
in-nest workers (Fig.2A,B). Although age was correlated with JH
content in the age-typical colonies (Fig.3A), there was no correlation
in the single-cohort colonies (Fig. 3B). This suggests that, while age

may influence endocrine state to indirectly affect behavior, JH is
the principal correlate of foraging activity. Another notable
difference between these colony types was that JH was higher in
single-cohort foragers than in age-typical foragers (Fig.2A vs 2B).
Perhaps the very young workers of the single-cohort colonies have
a higher threshold for foraging (Beshers and Fewell, 2001) and,
correspondingly, more circulating JH may be required for foraging
onset to occur. The finding that JH was elevated in foraging workers
is similar to results for P. californicus founding queens (Dolezal et
al., 2009) and parallels information on the behavioral physiology
of honey bees, where elevated JH corresponds to foraging activity
in workers (e.g. Jaycox et al., 1974; Robinson, 1987; Sullivan et
al., 2000). While there is evidence that JH is not required for foraging
activity in honey bees (Huang and Robinson, 1995; Sullivan et al.,
2000) and P. californicus queens (Dolezal et al., 2009), collectively
the data support the hypothesized role of JH as a behavioral
reinforcer during and following the transition from nest tasks to
field tasks (Amdam and Ombholt, 2003), changing its role from a
regulator of reproductive status and behavioral dominance in more
primitive groups (Hartfelder, 2000).

Unlike JH, ecdysteroid content did not follow the same pattern as
found in P. californicus queens, in which no clear differences were
observed between foragers and non-foragers (Dolezal et al., 2009).
Under age-typical (Fig. 4A) and single-cohort (Fig.4B) circumstances,
the onset of worker foraging behavior corresponded with both
increased JH and, unlike in P. californicus queens, ecdysteroid content.
As we speculated, ecdysteroid content was associated with the
general trend in ovarian integrity and was thereby consistently
elevated in nest workers compared with foragers (Fig.2A,B). Active
ovaries are the primary source of ecdysteroids in adult insects
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(Raikhel et al., 2005), and although P. californicus nest workers do
not reproduce directly, their ovaries produce sterile nutritive eggs that
are fed to developing larvae (A.G.D., personal observation). Because
ovarian activation is often linked to ecdysteroid changes (Raikhel et
al., 2005; Dong et al., 2009), we suggest that this activity is related
to the elevation in the workers’ ecdysteroid level. As workers
transition to foraging, they no longer produce nutritive eggs and their
ovaries gradually degenerate (A.G.D., unpublished data) (Holldobler
and Wilson, 2009). We suggest that these changes are related to
reduction in ovarian activity and ecdysteroid levels. Unlike workers,
queens forage for only a short period before returning to large scale
egg production in the nest, and during foraging the functionality of
queen ovaries is maintained (A.G.D., unpublished data). These
factors explain why ecdysteroid levels remain steady in queens instead
of declining, as they do in workers.

Despite a body of evidence suggesting that ecdysteroids may have
lost their behavioral role in adults during the evolution of eusocial
insect taxa (Hartfelder et al., 2002), there are examples of divergent
ecdysteroid titers being associated with behavioral castes (Roseler
et al., 1985; Bloch et al., 2000b; Brent et al., 2006), and there is
emerging evidence of a link between ecdysteroids and foraging onset
in worker honey bees (Velarde et al., 2009; Wang et al., 2010).
Whether ecdysteroids impact the behavior of P. californicus workers
remains to be determined. Lower levels in foragers might only reflect
changes in ovarian physiology, and not be robustly tied to JH — the
primary endocrine correlate of behavior. This lack of association is
supported by our results; although JH and ecdysteroid levels were
significantly correlated in single-cohort colonies, they were not in
age-typical colonies (Fig.3). Correlation in single-cohort colonies
could be a consequence of the compressed transition that is taking
place. Ecdysteroid-related processes are being downregulated at the
same time that JH-related processes are being upregulated, when
they would otherwise be on different schedules. While ecdysteroids
may not directly influence the expression of foraging behavior in
P. californicus workers, their role in ovarian activity makes them

likely endocrine facilitators of nurse behavior. Ovarian ecdysteroids
can stimulate the production of egg yolk precursors (vitellogenins)
from the insect fat body — a tissue that is functionally homologous
to the vertebrate liver and white adipose tissue (Raikhel et al., 2005).
This stimulatory effect on yolk production implies that ecdysteroids
are not only markers of ovarian activity but also a functional
requirement for nutritive egg production, a nurse-specific trait in
many ants, including other Pogonomyrmex species (Wilson and
Eisner, 1957; Holldobler and Wilson, 1990). Whether ecdysteroids
influence the rate of nutritive egg production in workers of P.
californicus can be addressed in future experiments.

Interestingly, the function and makeup of nutritive eggs in these
ants bears a striking resemblance to secretions by the
hypopharyngeal head glands of honey bees (Wilson and Eisner,
1957; Amdam et al., 2003). During the nest stage, these glands
produce royal jelly that can be mixed with other secretions, nectar
and pollen as a general food source for honey bee larvae and adult
colony members, including foragers (Crailsheim and Stolberg,
1989). The hypopharyngeal glands use and store vitellogenin, the
yolk protein that is essential for egg production. Metabolic
consumption of vitellogenin by the bees’ hypopharyngeal glands
has been causally linked to their production of proteinaceous food
secretions (Amdam et al., 2003). Thereby, both ants with nutritive
eggs and honey bees have evolved mechanisms for exploiting
vitellogenin in social nourishment. Such nourishment is crucial to
colony integrity and development and has been much studied in
honey bees (Engels and Imperatriz-Fonseca, 1990; Naiem et al.,
1999; Amdam et al., 2003), while less work has been done in ants
(Holldobler and Wilson, 1990; Gobin and Ito, 2000; Khila and
Abouheif, 2008). Thus, further understanding of the role of non-
reproductive worker egg production in P. californicus can allow for
richer comparisons into how the reproductive infrastructure could
be exploited to evolve and sustain eusocial societies.

Although much remains to be clarified, our findings can be
interpreted as supporting the view that the mechanisms underlying
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death. That is, as a group of workers age (x-axis), the proportion of
workers performing different tasks changes (y-axis). High JH content
corresponds to foraging activities, and a high ecdysteroid content with nest
tasks; the bisecting line represents the proportion of workers performing
nurse (blue) or foraging (yellow) tasks, and demarks the different hormone
levels. (A) In age-typical colonies, the vast majority of young workers have
low JH levels and high ecdysteroid levels, and are inside the nest
performing nursing tasks. As they age, more workers initiate foraging,
which is a behavioral transition that is associated with high JH and low
ecdysteroids. (B) In single-cohort colonies, foraging onset begins at a much
earlier age, and proceeds faster, until the colony has achieved the
necessary balance between nurses and foragers. In both colony types, the
onset of foraging coincides with increased JH and decreased ecdysteroid
levels.

the worker division of labor may have been derived from regulatory
networks of reproductive development. The RGPH suggests that
the co-option of such networks may be a common route from which
insect societies evolved complex social behaviors (Amdam et al.,
2004). The finding that JH in P. californicus correlates with the
foraging behavior of sterile workers in a manner similar to that of
reproductive, colony-founding queens is consistent with this
hypothesis. The inference that presumably ovarian-produced
ecdysteroids may facilitate nurse behavior is also in line with the
model of social co-option of solitary reproductive mechanisms.
While neither of these associations has been causally linked to
behavior, the correlations described here provide important
additional information for understanding relationships between
reproductive physiology and complex social behavior. A more robust
evaluation of the RGPH would be made possible by future
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development of protocols for endocrine and functional genetic
manipulation of ants. The ability to push forward with these
investigations becomes more feasible as a result of the increasing
number of tools available for ant researchers (Smith et al., 2009).
For example, the growing number of annotated ant genomes
(Bonasio et al., 2010; C. R. Smith et al., 2011; C. D. Smith et al.,
2011; Suen et al., 2011; Wurm et al., 2011), including a closely
related Pogonomyrmex species (C. R. Smith etal., 2011; C. D. Smith
etal., 2011), opens up more ant systems to studies of the molecular
genetics of behavioral regulation.
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